

Texada Airport (YGB) Assessment for Hangar Expansion Project

Project No. 16008

September, 2016

Texada Airport (YGB) Assessment for Hangar Expansion Project

Prepared For Powell River Regional District Powell River, BC

Prepared by Enterprise Geoscience Services Ltd. Vancouver, B.C.

Distribution: Powell River Regional District 2 copies Enterprise Geoscience Services Ltd.

1 copy

Project No. 16008

September, 2016

TABLE OF CONTENTS

1.0	INTE	RODUCTION1
2.0	EXIS	TING SITE CONDITIONS
	2.1	CRANBY LAKE WATERSHED2
	2.2	EXISTING AIRPORT INFRASTRUCTURE
	2.3	WATER QUALITY
	2.4	SOILS AND DRAINAGE
3.0	DEV	ELOPMENT CONSTRAINTS AND OPPORTUNITIES6
4.0	HAN	GAR DEVELOPMENT ASSESSMENT8
	4.1	GENERAL REQUIREMENTS
	4.2	FILLING AND GRADING
	4.3	LAFARGE QUARRY AGGREGATE PRODUCTS10
	4.4	SEDIMENT AND EROSION CONTROL12
	4.5	WATER SUPPLY AND SANITARY FACILITIES13
		4.5.1 Water Supply
		4.5.2 Septic Field
5.0	REC	OMMENDATIONS14
6.0	PRO	FESSIONAL STATEMENT
7.0	CLO	SURE
REFI	ERENC	ES

FIGURES

Figure 1	Location Plan
Figure 2	Community Watersheds
Figure 3	YGB Existing Infrastructure and Obstacle Limitation Surface
Figure 4	Existing Infrastructure and Potential Future Hangar Development Areas
Figure 5	Example of Obstacle Limitation Surface
Figure 6	Detail Plan of South Area

TABLES

- Table 1Water Quality in Cranby Lake for Selected Parameters
- Table 2Water Quality in Airport Well for Selected Parameters
- Table 3
 Examples of Fill Purchase Costs for Various Fill Thicknesses
- Table 4
 SPLP Test Results for Lafarge Quarry Aggregate Products

i

PHOTOGRAPHS

- Photograph 1 YGB With Cranby Lake to East and Lafarge Quarry to North
- Photograph 2 Mismatching surface grades between adjacent hangar lots
- Photograph 3 Roof drainage causing minor erosion and wet season ponding
- Photograph 4 Example of bioswale and rock check dam for sediment and erosion control

APPENDICES

- Appendix A Well Log and Sewage Disposal Permit for YGB
- Appendix B Water Quality Data for Well and Cranby Lake
- Appendix C SPLP Results for Lafarge Quarry Aggregate Products

1.0 Introduction

The Powell River Regional District (PRRD) owns and operates an airport on Texada Island (YGB). Facilities at the airport include the runway, a terminal building with parking, water supply and septic field, and several hangars leased to aircraft owners. Recently there have been requests to the PRRD for a number of additional hangar spaces.

Most of the YGB property lies within the watershed of Cranby Lake, which is the water source for the Gilles Bay Improvement District (GBID). The Cranby Lake watershed is a designated "Community Watershed" and the Texada Island Official Community Plan (Bylaw No 395) designates the watershed as a Development Permit Area (DP1). Under this designation, an applicant proposing a development within the watershed:

"is required to provide to the Regional District (at the applicant's expense) a report by a Qualified Environmental Professional (as defined in Appendix A) which provides an opinion as to whether the natural features, functions or conditions that support fish life processes will be harmfully altered, disrupted or destroyed by the proposed development and whether the community water supplies for Gillies Bay and Van Anda will be adversely affected. In cases where such harmful or adverse effects are anticipated, the report must include recommendations as to how the impact of the works or activity proposed within the riparian assessment areas may be mitigated.

The Board will specify development permit conditions under Section 920(7) of the Local Government Act based on the report of the Qualified Environmental Professional."

The purpose of this report is to provide:

- a description of a proposed hangar expansion project at YGB;
- an opinion on the potential impacts to aquatic habitat and drinking water resources; and,
- recommendations to mitigate impacts.

Additional requirements for developments are described in the Texada Island Watershed Protection Bylaw No 237. The purpose of the bylaw is to protect water quantity and quality within the community watersheds through limitations on the types of developments. Section 4 of the bylaw applies to all zones and describes setback requirements for building structures and septic fields from water courses, minimum parcel sizes for accessory buildings and structures, and provides restrictions on use to avoid storage of materials or use of the land that could result in the release of deleterious substances to water. The airport area is zoned AP-1 which designates the following permissible uses:

- (a) Airport;
- (b) Accessory One-Family Residential;
- (c) Accessory Airport Recreation;
- (d) Public Utility.

The bylaw also restricts the storage and sale of fuel for protection of water quality.

2.0 Existing Site Conditions

Our understanding of site conditions is based upon review of existing sources of information and a site reconnaissance of the airport and surrounding area on August 26, 2016. The airport is located between Gilles Bay and the Lafarge limestone quarry on the west side of Texada Island (Figure 1). Access to the site is by way of Airport Road which runs between Cranby Lake and the airport.

2.1 Cranby Lake Watershed

The Cranby Lake Community Watershed boundary encompasses most of the airport property and is shown in Figure 2. The entire watershed boundary as defined in the bylaw is approximately 890 ha in area with YGB contributing drainage from a relatively small area west of the lake. The topographic divide runs essentially down the centerline of the runway. Drainage to the west of runway centerline flows towards Strait of Georgia and drainage to the east flows towards Cranby Lake. The airport and surrounding area are illustrated below in Photograph 1.

Photograph 1: YGB with Cranby Lake to the east (right side of photo) and the Lafarge Quarry in the background (looking north).

2.2 Existing Airport Infrastructure

Existing infrastructure at the airport includes the runway and apron, a small terminal building with parking area, a water supply well and septic field servicing the terminal building, a gravel taxiway and eight exiting hangar buildings located south of the terminal (Figure 3). Recently, a second water well was drilled by one of the hangar tenants west of the existing hangars. Copies of the original water well log and sewage disposal permit are provided in Appendix A.

2.3 Water Quality

Laboratory water quality test reports were provided by Vancouver Coastal Health for the airport drinking water well and for raw water samples from the Gilles Bay Improvement District. The raw water sample is collected from upstream of the treatment works and is therefore considered representative of Cranby Lake water quality. Copies of these testing reports are provided in Appendix B.

Potential concerns for water quality in Cranby Lake associated with the hangar expansion project primarily relate to turbidity and suspended solids associated with runoff and erosion from areas of filling required to create hangar lots and taxiways. There may also be increased concentrations of metals associated with the suspended solids. If the hangar project was to include developing new sanitary facilities, potential concerns for lake water quality would also include nutrients such as nitrate associated with any septic field expansion.

Water quality results (2014 and 2015) from Cranby Lake for seven parameters are presented below in Table 1. Overall, the water quality is very good as a surface water source for drinking water. Water pH is near neutral and turbidity is low (< 1 NTU) indicating little input of suspended particles such as silt and clay from surface runoff and erosion. Electrical conductivity is relatively low, consistent with low mineral content in the water as expected for a lake source. Nitrate levels are low and well below the maximum acceptable concentration (MAC) from the Guidelines for Canadian Drinking Water Quality (GCDWQ), indicating no significant inputs of nutrients from septic systems or agricultural runoff. Detectable concentrations of colour and iron are present, which is likely due to leaching of organic matter from the surrounding forests, which is typically for surface water sources in the coastal region of British Columbia. Arsenic concentrations are near or below the detection limit, and well below the MAC.

Parameter	Arsenic (mg/L)	Iron (mg/L)	Nitrate (mg/L) as N	pH (units)	Turbidity (NTU)	Electrical Conductivity (µS/cm)	Colour (colour units)
Apr, 2014	0.0002	0.035	<0.01	7.50	0.68	117	20
Nov, 2015	<0.0002	0.084	0.04	7.13	0.80	118	20
MAC ¹	0.01	-	10	-	-	-	-
AO ²	-	0.3	-	6.5-8.5	-	-	-

Notes

- 1. MAC maximum acceptable concentration
- 2. AO Aesthetic objective

Water quality results from the airport well are summarized for selected parameters in Table 2. Water pH is slightly alkaline at 8.2 and total dissolved solids are 150 mg/L, indicating a low to moderate level of overall mineral content in the well water. Dissolved iron is below the detection limit and the nitrate level is well below the MAC. Dissolved arsenic is somewhat elevated relative to background levels at 0.0092 mg/L, but below the MAC of 0.01 mg/L. Elevated arsenic concentrations are found in well water at many locations on the Sunshine Coast and are associated with naturally occurring mineralization in the rock (MOE, 2007).

Total coliform and E. Coli are bacteriological parameters and the CDWQG specify that they should not be present in detectable concentrations in drinking water sources "at the tap". E.Coli was not detectable in the well water sample, but a detectable concentration of total coliform (2 "most probable number per 100 ml of water") was measured. Total coliform is typically removed from drinking water by disinfection with chlorine or UV.

Parameter	Arsenic (mg/L)	lron (mg/L)	Nitrate (mg/L) as N	pH (units)	Turbidity (NTU)	Total Dissolved Solids (mg/L)	Total Coliform (MPN/100 mL)	E. Coli (MPN/100mL)
Oct, 2010	0.0092	<0.005	0.34	8.22	0.2	150	2	<1
MAC ¹	0.01	-	10	-	-	-	0	0
AO ²	-	0.3	-	6.5- 8.5	-	-	-	-

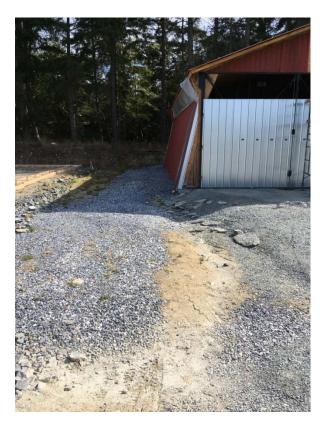
Table 2: Water Quality in A	Airport Well for Selected Parameters
-----------------------------	--------------------------------------

Notes

- 1. MAC maximum acceptable concentration
- 2. AO Aesthetic objective

2.4 Soils and Drainage

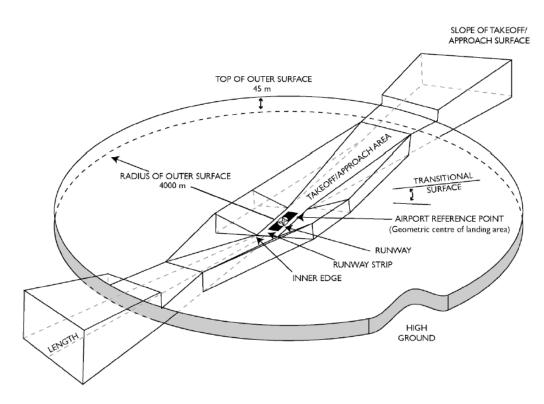
Soils in the vicinity of the airport are primarily clayey in texture (D. Glover, per comm.). The well log in Appendix A indicates brown clay and silt extending to a depth of about 20 m underlain by clay and broken rock. These soils are interpreted to be poorly drained (i.e. would have a low capacity to absorb and transmit seepage).


Other than the runway which is crowned to shed drainage to the east or west, there is little in the way of formal drainage improvements (i.e. ditches, culverts) at the site. A drainage ditch running approximately north-south has been developed in a topographically low-lying area east of the runway and west of the existing hangars (Figure 4). According to Mr. Rick Jones, who leases one of the existing hangar lots and arranges for grass trimming at the airport, the ditch is dry through most of the year and there is no significant ponding in the low lying area during winter months. Detailed topographic mapping provided by the PRRD indicates the ditch slopes from an elevation of about 95.5 masl at the north end to about 91.5 masl at the south end near

the edge of the forest. This slope of about 4 m over a distance of 160 m produces an overall grade of about 2.5 %.

The existing hangar lease lots have differing grades in some cases that direct drainage from one lot onto the next (Photograph 2). Roof drainage typically exhausts directly onto the ground surface creating ponding conditions and minor erosion during wet periods (Photograph 3). Based on these observations, it is concluded that a lack of drainage measures for the existing hangar lots produces nuisance runoff and minor erosion which could be controlled with simple improvements.

Photograph 2: Mismatching surface grades between adjacent hangar lots


Photograph 3: Roof drainage causing minor erosion and wet season ponding

3.0 Development Constraints and Opportunities

In determining areas that could be potentially suitable for development of additional hangars at YGB, two types of constraints were considered:

- airspace constraints required for aircraft maneuvering; and,
- environmental constraints related to setbacks and other requirements of the bylaws.

Airspace constraints are described in terms of an obstacle limitation surface (OLS) which diagrams the airspace required off the ends and sides of the runways for aircraft navigation. These concepts are shown in Figure 5.

Figure 5: Example of Obstacle Limitation Surface about a runway (Source: Transport Canada).

Mr. Russell Storry, Airport Manager, assisted in providing the setback requirements for the local OLS at YGB. Parallel to the runway, the current OLS rises vertically 50 m east and west of the runway centerline. Future vertical OLS requirements may extend to 60 metres from runway centre-line. Essentially, this prohibits development of any above ground structure with 60 m either side of the centerline. Off the north end of the runway, the OLS rises at 8% beginning at a distance of 30 m beyond the end of pavement. At the south end of the runway, owing to lower surrounding terrain, the OLS rises at 5 % beginning 30 m beyond the end of pavement. The OLS thus provides a limitation for above ground structures such as hangars within 60 m of the runway centerline and within certain areas off the ends of the runway.

Allowing for the OLS, construction of hangars would not be permitted adjacent to the runway or within restricted areas off the ends of the runway. Hangar development at the south end of the runway is considered impractical given the distance from the site access off Airport Road and is not considered further. Similarly, there would be some restrictions off the north end of the runway for the OLS, leaving two relatively large areas, one to the north of the terminal building and the second to the south of the terminal building in the vicinity of the existing hangars, for potential future hangar development.

It is understood that consideration is being given to developing a medivac helipad in the area north of the Terminal Building (Figure 4). The helipad would create a new OLS causing some restriction in areas suitable for hangar development. Because of the airspace restrictions, and also due to a lack of natural or constructed points for surface drainage in the northern area, the southern area in the vicinity of the existing hangars is considered to be the preferred location for future hangar development.

4.0 Hangar Development Assessment

4.1 General Requirements

Functionally, the proposed hangar expansion area must have:

- Structural fill placed to create a bearing surface for hangar structures and taxiways;
- The site must be graded to promote runoff and water must be directed to ditches or swales graded to carry away the runoff; and,
- Site grades must be sufficiently gentle to allow aircraft movement on taxiways and into hangars in accordance with Transport Canada requirements.

The Transport Canada requirements for allowable longitudinal grades for taxiways are technical and depend on the category of aircraft and other factors. Overall, they should be as flat as possible with grade limitations of between 1.5 and 3 %. Recognizing that the overall grade for the ditch in the south area is about 2.5 %, it should be feasible to achieve the required taxiway grades.

The South Area is approximately 0.81 ha in area. Allowing approximately 25 % of the area for taxiways, drainage facilities and other requirements, the area remaining for hangar development would be about 0.6 ha. It is understood that the existing hangar lease lots are about 250 m² in area. Therefore, the south area could potentially accommodate in the order of 20 or more new hangar lots.

In addition to these requirements, the PRRD may also consider constructing a new sanitary facility (e.g. shower and washrooms) and possibly a water supply source for washing and maintaining aircraft.

Environmentally, the proposed hangar expansion project must:

- Be constructed and maintained in a manner that does not detrimentally impact water quantity or quality in Cranby Lake; and,
- Meets all relevant bylaw requirements.

The overarching intent of the bylaws is to protect and maintain the water quality in Community Watersheds. This is largely achieved through restrictions on the type of land use and appropriate setbacks from watercourses. The bylaws define watercourses as:

• "Watercourse" means a natural watercourse or source of water supply, whether usually containing water or not, and includes a lake, river, creek, spring, ravine, swamp and gulch and does not include ditches or artificially created watercourses.

The existing ditch in the South Area is an artificially created watercourse that is not included in the bylaw definition and therefore, setback requirements are not applicable. The bylaws

specifically prohibit bulk storage of fuel at the airport and therefore, fuel storage is not considered as a potential concern. The primary environmental concerns associated with the hangar expansion project are judged to be erosion and sedimentation generated from fill, both during and after construction. A secondary and lesser concern would be loading of nutrients to the ground from a septic field if the project included new sanitary facilities.

4.2 Filling and Grading

A filling and grading plan needs to be developed that will promote drainage to the ditch and respect the required grade limitations for aircraft movement. This plan should be prepared by a Professional Engineer or other qualified person. This plan will require a detailed topographic survey. Soil conditions should be investigated by test pits or other means to confirm that there is adequate foundation bearing for the fill, and no soft organic soils or loose fill that could result in total or differential surface settlement.

The filling and grading plan should include measures, where required, such as intermediate ditches and culverts to direct drainage to the ditch identified in Figure 6. This plan should also include remedial drainage measures for the existing hangar lease lots east of the existing taxiway and east of the South Area. These remedial drainage measures are expected to be quite minimal.

Filling and grading will represent a significant cost for the proposed hangar expansion project. Fill quantities should be minimized to minimize costs as well as decreasing potential sediment load to the ditch. As an example, costs solely for fill purchase and delivery from the nearby Lafarge Quarry were estimated with the assistance of a local contractor. There are two types of construction aggregates commonly available from the quarry:

- Pit run which consists of blasted rock, normally containing particles about 100 mm with some particles up to 300 mm; and,
- Aggregate which consists of 19 mm minus material, compacts well and is suitable for finishing the surfaces of taxiways and hangar development lots.

Accurate quantities of fill would be developed from the grading and filling plan. Based on an area of 0.8 ha for the South Area, and assumptions about the probable range of fill thicknesses required, a rough approximation of fill purchase costs is shown in Table 3. These costs are exclusive of spreading and compacting fill, survey and engineering services, and other ancillary costs. If overall costs are prohibitive, the PRRD could consider carrying out the project in phases to defer costs.

Total Fill Thickness (m)	Pit Run Thickness (m)	Approx. Pit Run Cost (\$/m ³)	Aggregate Thickness (m)	Approx. Aggregate Cost (\$/m ³)	Approx. Total Cost of Fill ^{1,2}
0.3	0.15	\$8.50	0.15	\$16.50	\$30,000
0.5	0.35	\$8.50	0.15	\$16.50	\$44,000
1.0	0.85	\$8.50	0.15	\$16.50	\$78,000

Table 3: Examples of Fill Purchase Costs for Various Fill Thicknesses

Notes

- 1. Costing is for illustrative purposes and does not include costs for spreading, compaction, engineering and surveying services, culverts, erosion control measures or other requirements.
- 2. Total fill cost assumes the indicated thickness of pit run and aggregate are placed over an area of 0.8 ha.

4.3 Lafarge Quarry Aggregate Products

The Lafarge Quarry is north of and in close proximity to YGB. The quarry produces limestone used in cement production, "chemical grade limestone" used in consumer products and aggregates. The aggregate products include "pit run" (300 mm minus) and "aggregate" (19 mm minus) used as structural fill in construction projects including road surfacing.

The limestone is produced from the Marble Bay Limestone Formation which is extensive throughout the north end of Texada Island. Locally, the limestone has been intruded by younger igneous rocks resulting in occurrences of sulphide mineralization (iron, copper, gold) that have been developed in past-producing mines.

When mineralized rock is broken up into smaller particles and exposed to oxygen and water, as in a quarry or mine, dissolved metals may be released into the drainage under certain geochemical conditions. These processes fall into two general categories: i) acid rock drainage or ARD; and, ii) metals leaching or ML. ARD occurs when acidity is generated during oxidation of sulphide minerals. ARD is a process that occurs under low pH conditions and it is considered very improbable that this could occur with aggregate products from the Lafarge Quarry because any acid generated is quickly neutralized by the limestone. ML is a process that occurs whereby certain metals can be leached from the rock under neutral pH conditions.

Lafarge staff were contacted and agreed to conduct testing of aggregate material currently stockpiled at the quarry to assess the metals leaching potential of their products. One sample of "pit run" consisting of a 50 % / 50 % mixture of limestone and granite (Sample 1) and one sample of 19 mm minus "high fines surfacing aggregate" consisting of granite with 5 % to 10 % limestone (Sample 2) were analyzed. The testing method involved the Synthetic Precipitation Leaching Procedure (SPLP). The testing method was developed by the US Environmental Protection Agency and is designed to assess leaching characteristics for waste rock material from mine sites. Briefly, the aggregate samples are contacted with a dilute acid intended to mimic precipitation for a period of 18 hours and then the resulting solution is analyzed for metals.

Results from the SPLP tests are summarized and compared with Canadian Drinking Water Quality Guidelines (CDWQG) on Table 4. As shown, the results from the pit run sample (Sample 1) had concentrations of all metals parameters less than the CDWQG levels. The metals results for the 19 mm minus high fines aggregate sample (Sample 2) also met the CDWQG for all parameters except arsenic. The SPLP result for arsenic was 0.011 mg/L compared to the drinking water quality guideline of 0.01 mg/L, indicating it marginally exceeds the guideline value.

Based on these results the aggregate products are considered suitable as structural fill for the hangar expansion project and would not detrimentally impact water quality in Cranby Lake, provided there are adequate sediment and erosion controls in place as described below. The PRRD may consider further testing of the aggregate products as a quality control measure at the time of construction.

	Sample 1 ¹	Sample 2 ¹	Detection	CDWQ	CDWQ
			Limit	MAC ²	AO ²
Test Date	9/7/2016	9/13/2016			
<u>Total Metals</u>					
Antimony (Sb)	0.001	0.001	0.0005	0.006	
Arsenic (As)	< 0.001	0.011	0.001	0.010	
Barium (Ba)	< 0.10	< 0.10	0.1	1	
Berilium (Be)	< 0.005	< 0.005	0.005		
Boron (B)	< 0.050	< 0.050	0.05	5	
Cadmium (Cd)	0.0001	< 0.0001	0.0001	0.005	
Chromium (Cr)	< 0.005	< 0.005	0.005	0.05	
Cobalt (Co)	< 0.002	< 0.002	0.002		
Copper (Cu)	< 0.010	< 0.010	0.01		1
Iron (Fe)	< 0.10	< 0.10	0.1		0.3
Lead (Pb)	0.002	< 0.001	0.001	0.01	
Mercury (Hg)	< 0.0001	< 0.0001	0.0001	0.001	
Nickel (Ni)	< 0.010	< 0.010	0.01		
Selenium (Se)	< 0.002	< 0.002	0.002	0.05	
Silver (Ag)	0.0003	0.0001	0.0001		
Thalium (Th)	< 0.001	< 0.001	0.001		
Uranium (U)	< 0.002	< 0.002	0.002	0.02	
Vanadium (V)	< 0.005	< 0.005	0.005		
Zinc (Zn)	0.21	< 0.050	0.05		5
Zirconium (Zr)	< 0.005	< 0.005	0.005		

 TABLE 4 - SPLP Test Results for Lafarge Quarry Aggregate Products

Footnotes:

Concentrations are in milligrams per litre unless otherwise stated.

1. Summary of Guidelines for Canadian Drinking Water Quality, Health Canada.

2. MAC = Maximum Acceptable Concentration, AO = Aesthetic Objective.

Italic values identifies result exceeding CDWQ AO.

Shaded values indentifies result exceeding CDWQ MAC.

4.4 Sediment and Erosion Control

Control of sediment and erosion on the YGB property, during and after construction is key to protection of water quality in Cranby Lake. Very effective methods for sediment control are commonly employed for similar projects. Mitigation measures for sediment and erosion control should be specified in the filling and grading plan.

The filling and grading plan should direct all site drainage from the proposed hangar expansion project to the existing ditch in the South Area. This provides a single point to control sediment before it leaves the YGB property. Methods for sediment control could involve, for example, a sedimentation pond, check dam and bioswale.

A check dam is a small dam constructed across a ditch to counteract erosion by reducing water flow velocity. A check dam constructed at the downstream outlet of a small sedimentation pond would be effective at removing larger sediment particles by gravity settlement in the pond. A bioswale is a swale with gently sloped sides and planted with vegetation. The purpose of a bioswale is to remove silt and finer particles in the drainage that do not settle as easily by gravity. An example of a rock check dam and bioswale is shown in Photograph 4.

Photograph 4: Example of bioswale and rock check dam for sediment and erosion control

In addition to these design elements, scheduling the construction work for the summer dry season will minimize the potential for generation of sediment while the control features are under construction.

4.5 Water Supply and Sanitary Facilities

Based on discussions with PRRD staff, consideration is being given to constructing improved sanitary facilities at the YGB. This could involve washroom/shower facilities and possibly a standpipe with water supply for washing aircraft or other purposes.

4.5.1 Water Supply

A water supply is required for washroom and shower facilities, and also to provide water to a standpipe or standpipes for aircraft washing and other purposes. If the water is used for drinking water, it must be of potable quality. As it understood that the nearest water system is the GBID, it is assumed that the improvements would be supplied by well water.

The driller's report for the existing airport well reports the yield as either 1.8 or 18 US gallons per minute (Appendix A). This represents a fairly large range as 1.8 USgpm would typically supply a household, but would not likely supply a washroom and shower facility as well as a water supply standpipe.

Based on discussion with a hangar tenant who drilled a second well in the vicinity of the existing hangar development, no well log is available and the yield is unknown. Therefore, the yield of the primary well is uncertain and is unknown for the secondary well. In addition, it is unknown if the water quality in the second well is of potable quality. Short duration pumping tests and water quality analysis on the second well should therefore be carried out as a basis to decide what the sustainable yield is and therefore whether improved sanitary facilities would be feasible from an onsite well water source.

4.5.2 Septic Field

The existing septic field for the terminal building is located south of the parking area and terminal building, east of the taxiway from the runway apron and west of Airport Road. The field was designed for the single bedroom caretaker's suite and would not be suitable for new expanded sanitary facilities associated with the proposed expansion.

Subject to proving up a water supply, it would be feasible to construct a septic field for the sanitary facilities. Individual septic fields should not be constructed by hangar tenants because this would require individual water supply connections to each hangar lease lot, the area of individual lease lots is not large enough to accommodate a hangar and septic field, and building individual septic fields would take up valuable space that can be used for other purposes (such as hangar lease lots).

If the PRRD intends to provide water supply and sanitary facilities, it is recommended that a common washroom / shower facility be designed and constructed with a single water supply source and single septic field. Regulation of septic systems with daily design flows less than 22,700 L/day falls under the Public Health Act Sewerage System Regulation (SSR). The actual daily design flow would depend on the available water supply and size of the sanitary facilities, but be less than the maximum under the SSR and would not fall under the scope of larger systems which fall under the Municipal Wastewater Regulation.

Design of the septic system must be undertaken by a professional qualified in design and construction of septic systems, or a registered onsite wastewater practitioner (ROWP).

The septic system must have a setback of at least 30 m from a drinking water well, unless a professional experienced in hydrogeology provides in writing that a lesser setback would be acceptable for protection of public health. Selection of the disposal area should be completed considering available area, proximity to the proposed sanitary facilities, design daily flow and soil conditions.

5.0 Recommendations

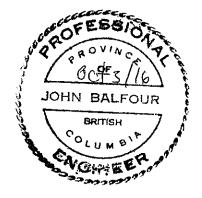
Based on review of the relevant bylaws, site analysis and review of available information, the following conclusions and recommendations are provided.

- 1) It is recommended that the "Southern Area" located between the runway and existing hangars be selected for future hangar development.
- 2) The PRRD should retain the services of a qualified engineer to prepare a grading and drainage plan for the expansion area that directs drainage to the existing ditch. The grading and drainage plan should include a sediment and erosion control plan to prevent off-site movement of silt and fines, both during and after construction. This plan should also include remedial measures to provide drainage for the newer existing hangar lots east of the taxiway which are expected to be quite minimal.
- 3) The grading and filling plan should minimize the quantities of new fill as it could render the project financially unfeasible and would also have the benefit of decreasing the extent of sediment control measures during construction.
- 4) Assuming the fill is to be sourced from local quarries, the material should be "non-leaching" for metals. It is recommended that SPLP testing on aggregate materials that produces an extract with concentrations no more than 2 x the Canadian Drinking Water Quality Guidelines would be suitable for on-site use and be protective of drinking water in Cranby Lake.
- 5) In accordance with the watershed protection bylaw, bulk storage or sales of fuel should be prohibited in that portion of the airport within the watershed.
- 6) If the PRRD wishes to provide water services to a washroom/shower facility, and possibly water supply for a standpipe, the "primary well" and "secondary well" should be tested for flow and water quality. If well yield and water quality are adequate to support a small water system, the PRRD should obtain a water system permit from Vancouver Coastal Health.
- 7) If the PRRD wishes to construct a washroom/shower facility, a new septic field would be required. It is recommended that any new sanitary facilities be "common" (i.e. not

individual systems associated with each hangar lot). The septic system should be designed and constructed under the direction of a professional or ROWP and should be sited more than 30 m from water supply wells.

6.0 Professional Statement

This report has been prepared by the undersigned. He is a Professional Engineer in good standing with the Association of Professional Engineers and Geoscientists of BC and has been practicing for over 30 years. He has previous experience with well water supplies, septic systems, soils and drainage, and assessment of water quality at mine sites.

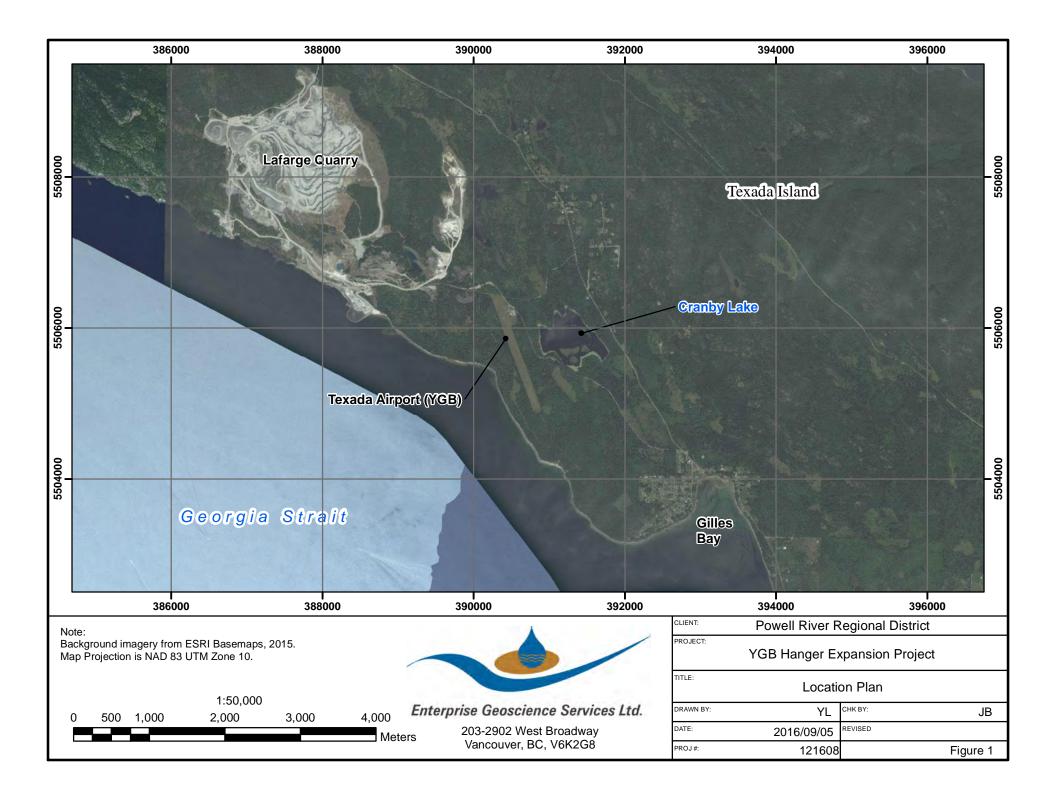

7.0 Closure

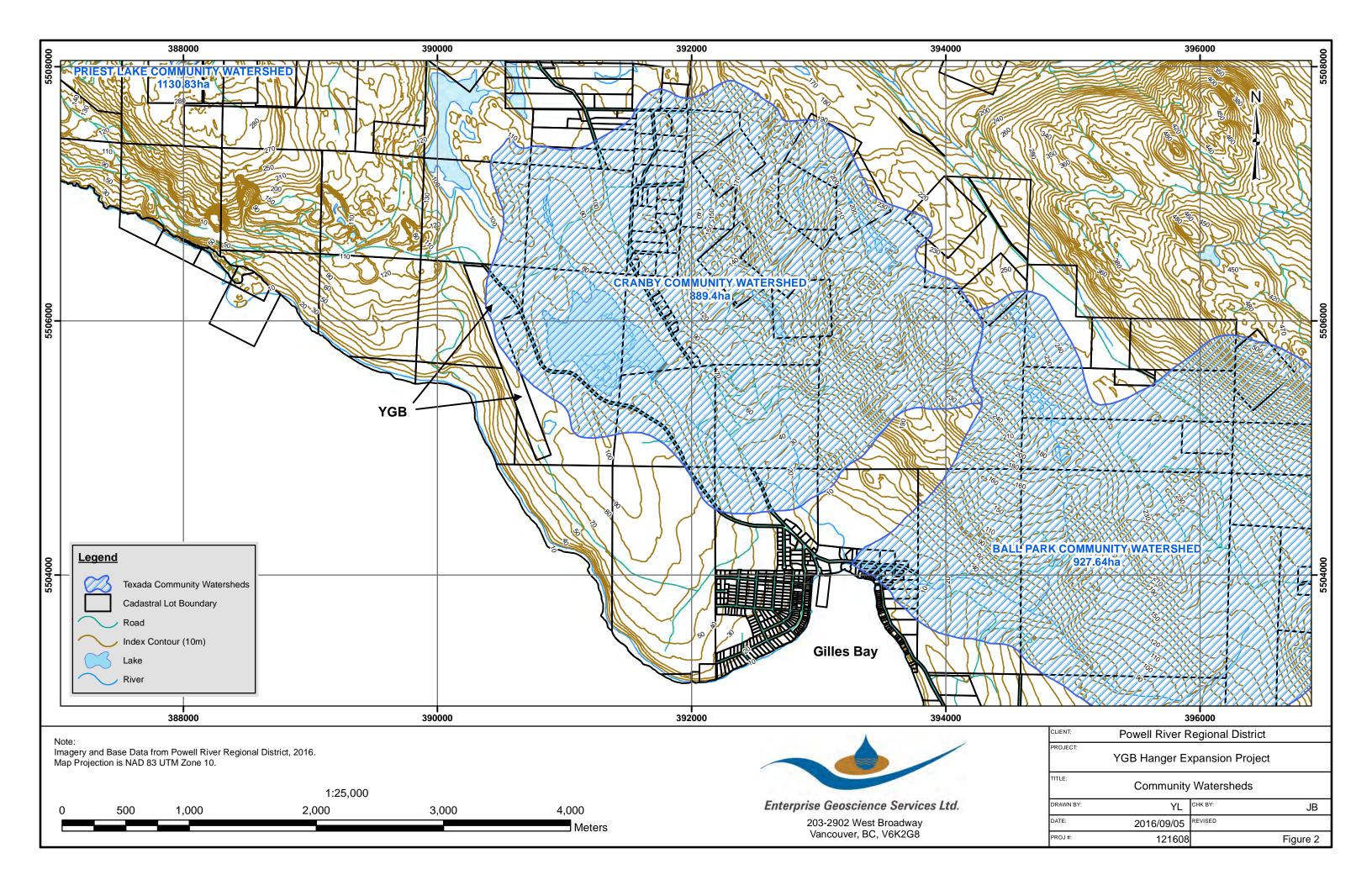
Thank you for the opportunity to prepare this report for the proposed hangar expansion project at YGB. If you have any questions or concerns, please do not hesitate to contact the undersigned.

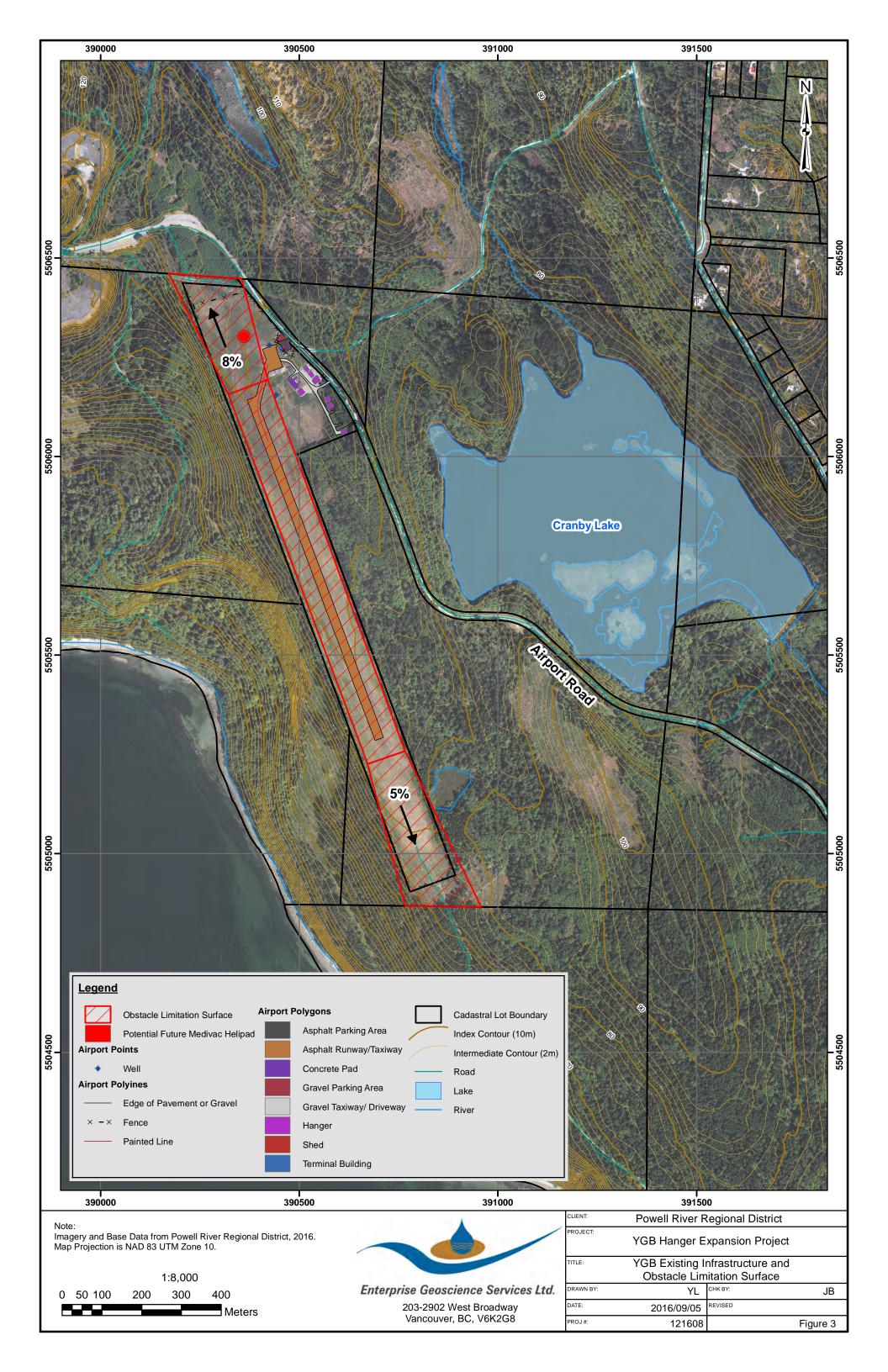
Respectfully submitted,

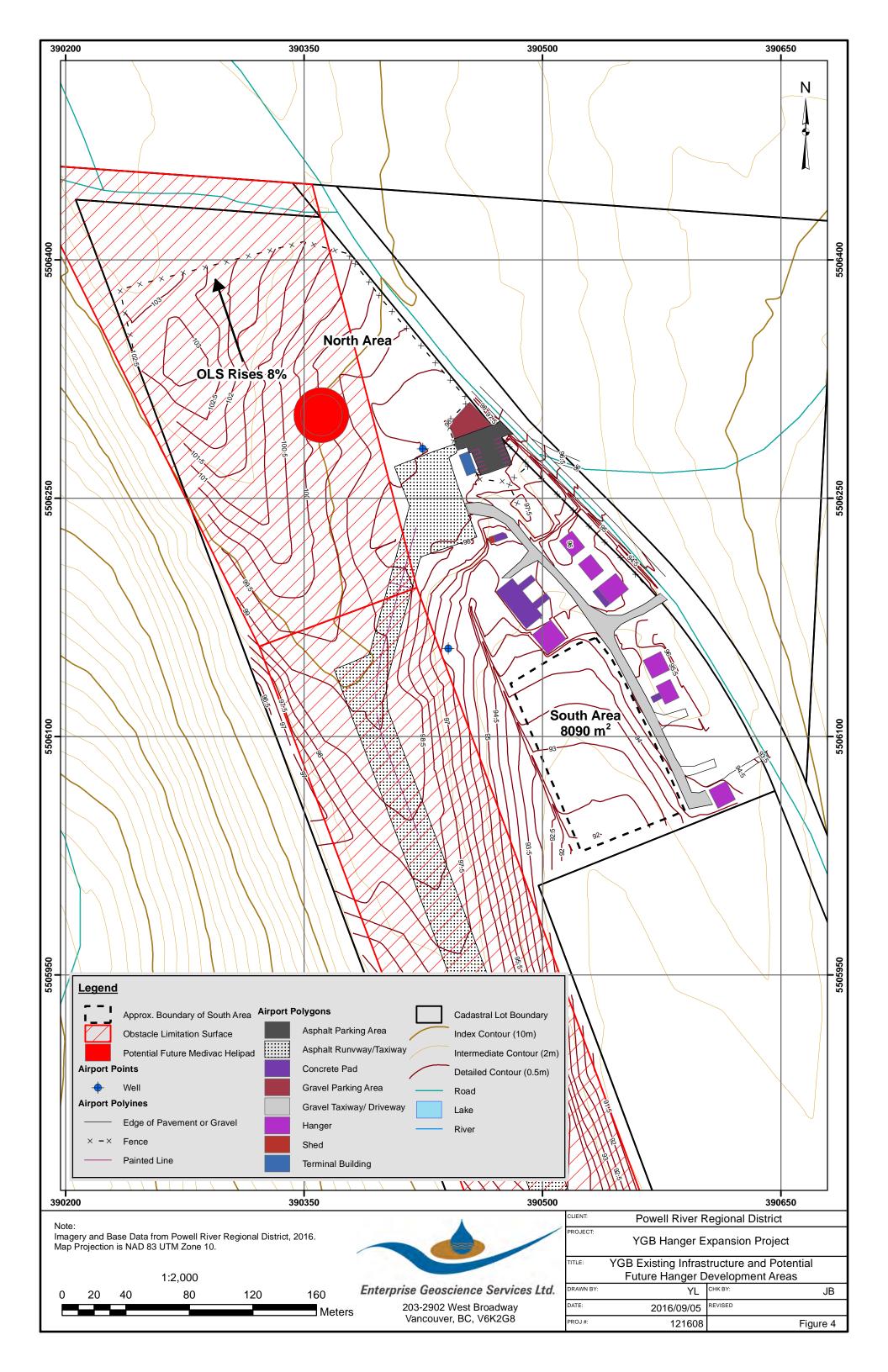
Enterprise Geoscience Services Ltd.

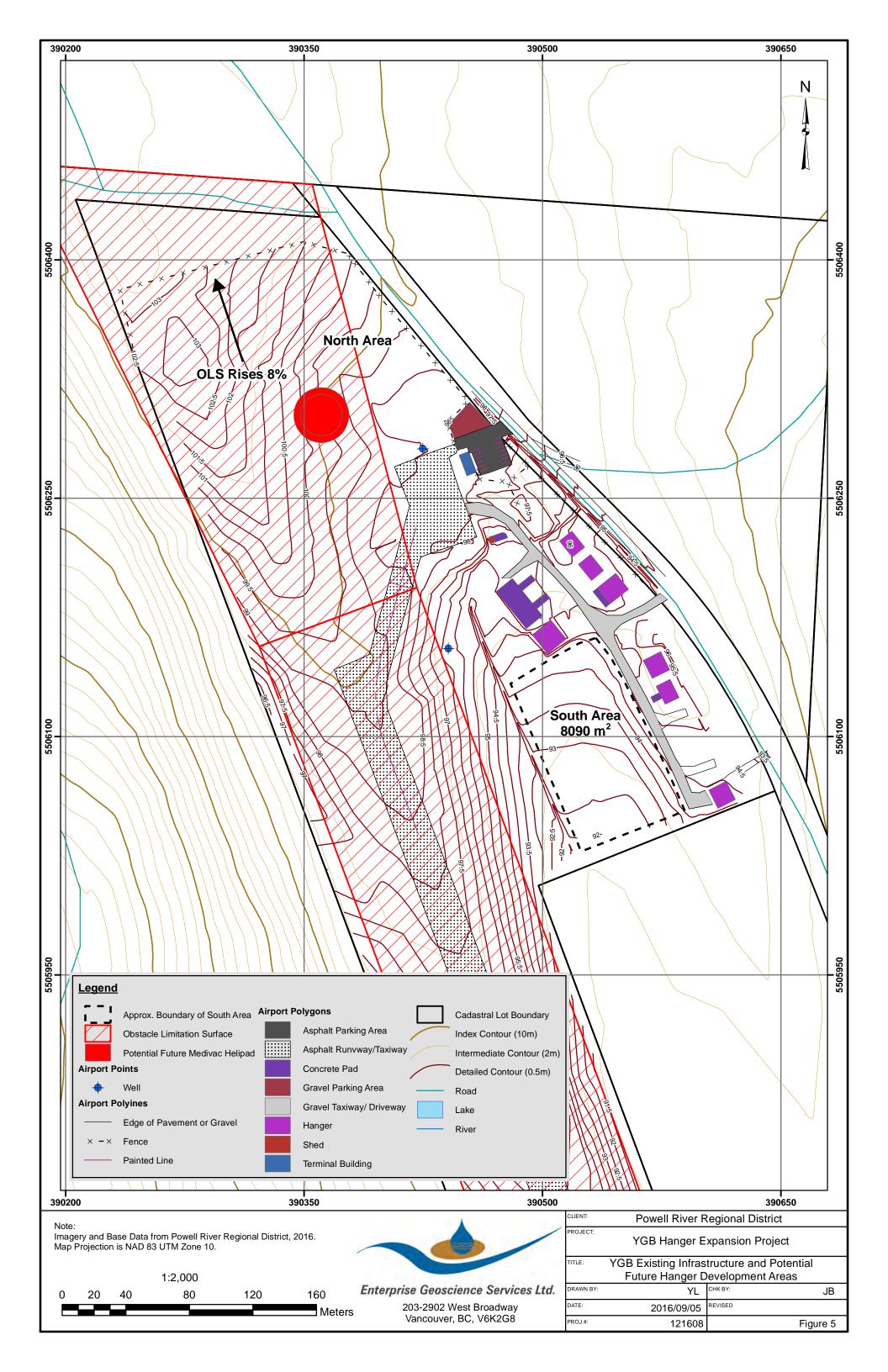
John Balfour, P.Eng.

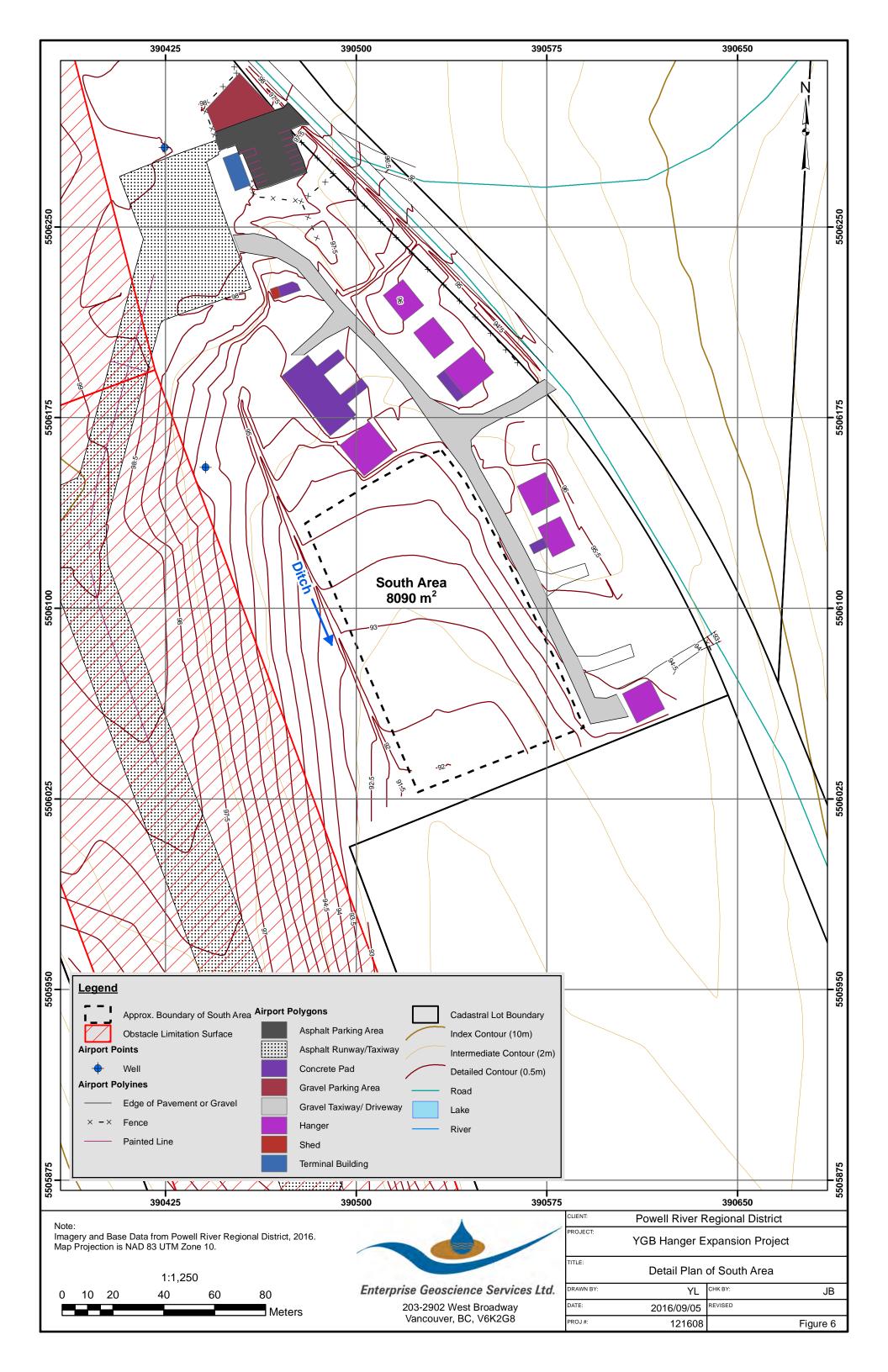

References


BC Ministry of Environment, February, 2007. Fact Sheet on Arsenic in Groundwater.


Public Health Act Sewerage System Regulation, June 28, 2010.


POWELL RIVER REGIONAL DISTRICT TEXADA ISLAND WATERSHED PROTECTION BYLAW NO. 237, 1993.


TEXADA ISLAND OFFICIAL COMMUNITY PLAN BYLAW NO. 395, 2005



Appendix A

Well Log and Sewage Disposal Permit for YGB

Ministry of Environment Water

Water Inv. gations Branch

WATER WELL RECORD

Date 8:211,112,31

Legal Description & Address lexada Skind C 7" Descriptive Location. Owners Name & Address N T S MAP ELEV WELL No. Y Z E N Date 19 1 🗆 Stéel 4 🖬 Plastic 2 Galvanized 3 🛛 Wood 2 🗋 Reconditioned I. TYPE 1 🖬 New Well 9. CASING: 3 🖸 Deepened 🛛 4 🖾 Abandoned 5 🖸 Concrete OF WORK Materials 6 🛛 Other 1 Cable tool 2 Bored 3 Jetted 4 Rotary a Timud b Pair c Treverse units 2. WORK Hole Diameter 57 ins METHOD 5 🛛 Other Diometer 6 ins ft O2 Municipal 3 🗆 Irrigation from 1 🗌 Domestic 3. WATER 4 🗌 Commercial & Industrial ft to WELL 5 🗋 Other Thickness ់កែទ USE 4. DRILLING ADDITIVES Gelstevent Weight lb/ft 2 Delow ground level Pitless unit. _ft 1 🖸 obove 5. MEASUREMENTS from 1 D ground level 2 D top of casing 2 Cemented 3 Threoded 1 🛛 Welded 4 DNew 5 DUsed SWL 6. WELL LOG DESCRIPTION Perforations: Surface till Shoe (s): Open hole, from 163 to 103 ft Mounchy, SI Diameter_ ЦĨ Some Ang. Mr. revelor Grout =__ 2 126 rees IO. SCREEN: 1 Dominal 2 Pipe Size 131 Туре 1 Continuous Slot 2 Perforated 3 🗌 Louvre Some Limestore 4 🗌 Other _ Material 1 🗋 Stainless Steel 2 🖾 Plastic 3 🖾 Other. to_____ft_below_ground_level Set from_ asing Troomy SCREEN & BLANKS units Length *****† Diam, I D ins Slot Size ins 11 swlid from ft to Fittings, top. bottom Gravel Pack __ (*) 1.1 II. DEVELOPED BY: 1 Surging 2 Jeffing 3 GRÁir 1. 5 🖸 Pumping 🛛 6 🔲 Other. 4 🛛 Bailing 12. TEST 1 □ Pump Rate <u>1.9.</u> USgpm 2 🛛 Ball Date 18 21/1/1/18 Temp____C SWL before test_ _ft_ofter_test_of____hrs ___ _mins TIME in mins & DRAWDOWN in ft TIME in mins & RECOVERY in ft mins WL mins WL mins 🔤 WL. WI mins i 186 CAINS on hole. Colong motoree RECOMMENDED PUMP SETTING RECOM RECOMMENDED PUMP TYPE MENDED PUMPING RATT 13. 350 1 1.5 50B USge 14. WATER TYPE: 1 Orresh 2 Isalty 3 Iclear 4 Deloudy smell_ _; gas 1⊡yes 2 🕼 ho colour filt A JUN 15. WATER ANALYSIS mg/l 7. CONSULTANT 2 🗆 Iron mg/1 3 Chloride_ ma// Address 4 ⊡рн Ц7Ю Field Date 8. WELL LOCATION SKETCH SITE I D No Lab Date 16. FINAL WELL COMPLETION DATA Well Depth 403 ft US opm To Mine Static Water Level _102_ Bock filled Well Head Completion _____ Sanitary Anstrik NÁME yell 17. DRILLER ROLL Signature_____ To Gilles Bay8. CONTRACTOR, Address J. B. CASWELL DRILLING LTD. 493-A PUNTLEDGE RD. COURTENAY, B.C. 338-1358 V9N 3P9 Member, BCWWDA **₽yes** □no ;_

		Province British C	olumbia	Ministry of Health PUBLIC HEALTH INSPECTION		A	SEWAGE	A PERMIT DISPOSAL	SYSTE	EM
	ATTACHE	D HERETO.	THE SEVIAGE	EREBY MAKES DISPOSAL REG	OLATIONS AND A	OWNER'S NAME	River	EWAGE DISPOSAL SPECIFICATIONS C Regional	SYSTEM P CONTAINED	URSUANT TO THE HEREIN AND/OR
i T	LEGAL DESCRI	TION AND STI	Lot A of and east	the north u		WET HOWNER'S ADDRE	SS A	Ave		<u>104</u>
	Airpon	T Term	inal, Tex	P (2060 AU COOR	Same			and and a second se	1	NER'S PHONE 833231
	STIMATED TO	AMILY DWELLIN	AGE B	DUPLEX	OTHER, SPECIFY:	Texada Isla		nt Termina	l	
} }] 	EGULATIONS	L TO HARDPAN	FLOWS PLUS	TERNINACU		LS)		MATERIAL	-	
י ד	OR BEDROCK I WATER TABLE	ATE DISPOSAL	36		750 gal	1 6	tank	Concrete TYPE OF PIPE	7	150 gallon
1993) E	ODAK, LAGO BED, CONVENT	IONAL, ETC.	Segrag	<u>e bed/dra</u>	infield	OF DISPOSAL PIPE		Plastic At	S INSII DIAN OF P	METER 4
-	<u>300</u>	FROM C	U		?	FROM NEIGHBOUR	'S	1/2 M	ile+ FRC	DM STREAM OR LAKE
- î	REATMENT PL	ANT	MAKE AND M	ODEL				TREATMENT CAPACITY		
	0		D ON LOTT			ee below) AND PERC				
	THE SEWA DISPOSAL	GE DISPOS	SAL SYSTEM	DESCRIBED AE CAL HEALTH OF	SOVE MUST BE C	ONSTRUCTED IN A EGATE MUST BE NO	CCORDANCE	WITH THE REQUIE THE INSTALLATION	EMENTS	OF THE SEWAGE FOR INSPECTION.
		Jan 4	1983		Dlen	Callet	Secretary	Treasurer		
suz J.	FRMI		CONST	RUCT- PU			D THE SEWA	GE DISPOSAL RE		
C	ONDITIONS		- 00		REBY GRANTED F	OR THE CONSTRUC	TION OF A SI	EWAGE DISPOSAL	SYSTEM.	D. N.
_(lizzo	of for	nes to	Le 19h	from to	maked group	e D d	Limond an	in to	had
	Cer C	Iracio	the the	tarte			<u> </u>	0		<u> </u>
+	11000	L'e cho	pozel 1	nila & a	egotic tim	1 the he	round	to car	uto	Lepth,
			5 83			BAtter	han			4
1 5 4 1	NOTE: CO	NSTRUCTIO	N MUST NOT	COMMENCE UN BE INSPECTED AND ZONING B	ITIL THIS PERMIT	LTH OFFICER OR DELEGA HAS BEEN SIGNED ITY HAVING JURISI RMIT IS NOT TRAN	BY THE MEDI	CAL HEALTH OFFIC RE BACKFILLING. ND EXPIRES SIX	ER OR HIS CHECK WI MONTHS	DELEGATE. THIS TH YOUR LOCAL FROM DATE OF
cor	MMENTS							BACKFILLING	- DATA	OF FINAL INSPECTION
		•						BACKFILLING AND USE AUTHORIZED		an 18/83
*******					······			LAD	ent	
A	PLOT PLAI	N SHOWING	G LOCATIONS		S SEPTIC TANKS	, DISPOSAL FIELD		MEDICAL HEALTH OFFI	\sim	
NE HO	IGHBOURS	ALL DRIN	KING WATER S	SOURCES, WATI	ER LINES, PERCOL	ATION HOLES AND	S (YOURS AN RESULTS, 4 F(ID YOUR DOT TEST		INSERT NORTH ARROW
								Station and Station and Station and Station		
			•					I	PERC RATES	3 Minutes inch.
			ſ							,
			('							/
			ĺ	AIRCLAF	~	Drilled				/
			Ľ	AIRCAAF	- JNC 0	Well Water li	- 	la l		
				Ten	A	And the second se	*L%>		7	
				See		Terminol Building			7	
			30	o Field A	PORKING L				Scale	= 1:2500
				BARREN	ANTIN			ł	Ľ	METRES
				Internet i	A-D-			//		r → ← I rv 83'
N.				R-O-				//		
A				Take this	direction r	the will				
e dis	₩35- RF	V 81.400		COPV 1	HEALTH DISTOR	12 MURE	-	/		

I lake this direction Not's mile

Appendix B

Water Quality Reports for Cranby Lake and YGB Well

 Exova
 T: +1 (604) 514-3322

 #104, 19575-55 A Ave.
 F: +1 (604) 514-3323

 Surrey, British Columbia
 E: Surrey@exova.com

 V3S 8P8, Canada
 W: www.exova.com

Report Transmission Cover Page

Bill To: Report To: Attn: Sampled By: Company:	PO Box 237 Gillies Bay, BC, Canada V0N 1W0		Yearly Base Line CL2 / Raw Tap # 1 Chlorinator Road	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Apr 30, 2014 May 16, 2014
--	--	--	---	--	------------------------------

Contact & Affiliation	Address	Delivery Commitments
Ken Taylor Gillies Bay Improvement District	, PO Box 237 Gillies Bay, British Columbia V0N 1W0 Phone: (604) 414-3703 Fax: null Email: deluxebros@hushmail.com	On [Lot Verification] send (COA) by Email - Single Report On [Report Approval] send (COC, Test Report) by Email - Merge Reports On [Report Approval] send (COC, Test Report) by Email - Merge Reports
Bridget Andrews Gillies Bay Improvement District	, PO Box 212 Gillies Bay, British Columbia V0N 1W0 Phone: (604) 414-3703 Fax: null Email: admin@gillies-bay.ca	On [Report Approval] send (Test Report) by Email - Single Report On [Lot Approval and Final Test Report Approval] send (Invoice) by Email - Single Report On [Lot Approval and Final Test Report Approval] send (Invoice) by Email - Single Report

Notes To Clients:

• Report was issued to include addition of metal and mercury analysis on sample 999436-1 requested by Bridget of Gillies Bay Improvement District on May 14, 2014. Previous report 1912600.

• Sample 999436-1; 4726764 pH analysis was performed past the recommended holding time of 15 minutes from sample collection.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.
 Exova
 T: +1 (604) 514-3322

 #104, 19575-55 A Ave.
 F: +1 (604) 514-3323

 Surrey, British Columbia
 E: Surrey@exova.com

 V3S 8P8, Canada
 W: www.exova.com

Analytical Report

Bill To:	Gillies Bay Improvement District	Project:		Lot ID:	999436
Report To:	Gillies Bay Improvement District PO Box 237 Gillies Bay, BC, Canada VON 1W0	ID: Name: Location: LSD:	Yearly Base Line CL2 / Raw Tap # 1 Chlorinator Road	Control Number: Date Received: Date Reported:	B031537 Apr 30, 2014 May 16, 2014
Attn: Sampled By: Company:	Ken Taylor	P.O.: Acct code:		Report Number:	1916327

		Reference Number	999436-1			
		Sample Date	April 29, 2014	Ļ		
		Sample Time	08:57			
		Sample Location				
		Sample Description	Yearly Base L	.ine- Raw		
		Sample Matrix	Drinking Wate	er		
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
letals Extractable						
Aluminum	Extractable	mg/L	<0.005	0.005	0.1	Below OG
Antimony	Extractable	mg/L	<0.0002	0.0002	0.006	Below MAC
Arsenic	Extractable	mg/L	0.0002	0.0002	0.010	Below MAC
Barium	Extractable	mg/L	0.003	0.001	1	Below MAC
Boron	Extractable	mg/L	0.008	0.005	5	Below MAC
Cadmium	Extractable	mg/L	<0.00007	0.00007	0.005	Below MAC
Chromium	Extractable	mg/L	<0.0005	0.0005	0.05	Below MAC
Copper	Extractable	mg/L	0.001	0.001	1.0	Below AO
Lead	Extractable	mg/L	0.0002	0.0001	0.01	Below MAC
Selenium	Extractable	mg/L	<0.0006	0.0006	0.01	Below MAC
Uranium	Extractable	mg/L	<0.0005	0.0005	0.02	Below MAC
Vanadium	Extractable	mg/L	0.0004	0.0001		
Zinc	Extractable	mg/L	0.004	0.001	5.0	Below AO
Metals Total						
Mercury	Total	mg/L	<0.00001	0.00001	0.001	Below MAC
Physical and Aggregate	Properties					
Colour	Apparent	Colour units	28	5		
Colour	True	Colour units	20	5		
Turbidity		NTU	0.68	0.02		
Routine Water						
рН	at 25 °C		7.50		6.5-8.5	Within AO
Electrical Conductivity		µS/cm at 25 C	117	1		
Calcium	Extractable	mg/L	16.4	0.1		
Iron	Extractable	mg/L	0.035	0.005	0.3	Below AO
Magnesium	Extractable	mg/L	2.02	0.1		
Manganese	Extractable	mg/L	0.004	0.001	0.05	Below AO
Potassium	Extractable	mg/L	0.4	0.1		
Silicon	Extractable	mg/L	0.32	0.05		
Sodium	Extractable	mg/L	4.4	0.1	200	Below AO
Bicarbonate		mg/L	58	5		
Carbonate		mg/L	<6	6		
Hydroxide		mg/L	<5	5		
P-Alkalinity	as CaCO3	mg/L	<5	5		
T-Alkalinity	as CaCO3	mg/L	47	5		
Chloride	Dissolved	mg/L	6.16	0.05	250	Below AO
Fluoride	Dissolved	mg/L	0.04	0.01	1.5	Below MAC

Exova T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

Analytical Report

Bill To: Report To: Attn: Sampled By: Company:	Gillies Bay Improvement District PO Box 237 Gillies Bay, BC, Canada VON 1W0	•	Yearly Base Line CL2 / Raw Tap # 1 Chlorinator Road	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Apr 30, 2014 May 16, 2014
--	--	---	---	--	------------------------------

		Reference Number Sample Date	999436-1 April 29, 20 [,]	14		
		Sample Time	08:57			
		Sample Location Sample Description Sample Matrix	Yearly Base Drinking Wa			
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Routine Water - Continu	ed					
Nitrate - N	Dissolved	mg/L	<0.01	0.01	10	Below MAC
Nitrite - N	Dissolved	mg/L	<0.01	0.01	1	Below MAC
Sulfate (SO4)	Dissolved	mg/L	3.4	0.5	500	Below AO
Hardness	as CaCO3	mg/L	49	1		
Total Dissolved Solids	Extractable	mg/L	61	1		

Nothiert ecs SUM

Mathieu Simoneau **Operations Manager**

Data have been validated by Analytical Quality Control and Exova's Integrated Data Validation System (IDVS). Generation and distribution of the report, and approval by the digitized signature above, are performed through a secure and controlled automatic process.

Approved by:

Exova T: +1 (604) 514-3322 #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Methodology and Notes

Bill To:	Gillies Bay Improvement District	Project:		Lot ID:	999436
Report To:	Gillies Bay Improvement District		Yearly Base Line	Control Number:	
	PO Box 237	Name:		Date Received:	Apr 30, 2014
	Gillies Bay, BC, Canada	Location:	CL2 / Raw Tap	Date Reported:	May 16, 2014
	V0N 1W0	LSD:	# 1 Chlorinator Road	Report Number:	,
Attn:	Ken Taylor	P.O.:			
Sampled By:		Acct code:			
Company:					

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Alk, pH, EC, Turb in water (Surrey)	APHA	* Alkalinity - Titration Method, 2320 B	01-May-14	Exova Surrey
Alk, pH, EC, Turb in water (Surrey)	APHA	* Conductivity, 2510 B	01-May-14	Exova Surrey
Alk, pH, EC, Turb in water (Surrey)	APHA	* pH - Electrometric Method, 4500-H+ B	01-May-14	Exova Surrey
Anions by IEC in water (Surrey)	APHA	 * Ion Chromatography with Chemical Suppression of Eluent Cond., 4110 B 	01-May-14	Exova Surrey
Apparent Color (Surrey)	APHA	 * Spectrophotometric - Single Wavelength Method, 2120 C 	02-May-14	Exova Surrey
Mercury Low Level (Total) in water (Surrey)	EPA	 Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry, 245.7 	15-May-14	Exova Surrey
Metals SemiTrace (Extractable) in water (Surrey)	US EPA	 Metals & Trace Elements by ICP-AES, 6010C 	01-May-14	Exova Surrey
Trace Metals (extractable) in Water (Surrey)	US EPA	 * Determination of Trace Elements in Waters and Wastes by ICP-MS, 200.8 	14-May-14	Exova Surrey
True Color in water	APHA	 * Spectrophotometric - Single Wavelength Method, 2120 C 	02-May-14	Exova Surrey
Turbidity - Water (Surrey)	APHA	 * Turbidity - Nephelometric Method, 2130 B 	02-May-14	Exova Surrey
		* Reference Method Modified		

References

APHA	Standard Methods for the Examination of Water and Wastewater
US EPA	US Environmental Protection Agency Test Methods

Guidelines

Guideline Description	Health Canada GCDWQ
Guideline Source	Guidelines for Canadian Drinking Water Quality, Health Canada, August 2012
Guideline Comments	MAC = Maximum Acceptable Concentration
	AO = Aesthetic Objective
	OG = Operational Guideline for Water Treatment Plants
	Refer to Health Canada GCDWQ for complete guidelines and additional drinking water information at www.hc-sc.gc.ca

Comments:

• Report was issued to include addition of metal and mercury analysis on sample 999436-1 requested by Bridget of Gillies Bay Improvement District on May 14, 2014. Previous report 1912600.

• Sample 999436-1; 4726764 pH analysis was performed past the recommended holding time of 15 minutes from sample collection.

 Exova
 T:

 #104, 19575-55 A Ave.
 F:

 Surrey, British Columbia
 E:

 V3S 8P8, Canada
 W:

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Methodology and Notes

 Bill To:
 Gillies Bay Improvement District
 Project:

 Report To:
 Gillies Bay Improvement District
 ID:

 PO Box 237
 Name:

 Gillies Bay, BC, Canada
 Location:

 VON 1W0
 LSD:

 Attn:
 Ken Taylor

 Sampled By:
 Acct code:

Yearly Base Line

CL2 / Raw Tap # 1 Chlorinator Road Lot ID: 999436

Control Number: B031537 Date Received: Apr 30, 2014 Date Reported: May 16, 2014 Report Number: 1916327

The comparison of test results to guideline limits is provided for information purposes only. This is not to be taken as a statement of conformance / nonconformance to any guideline, regulation or limit. The data user is responsible for all conclusions drawn with respect to the data and is advised to consult official regulatory references when evaluating compliance.

Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted. The test report shall not be reproduced except in full, without the written approval of the laboratory.

Terms and Conditions: www.exova.com/about/terms-and-conditions

	Advising Company	lorma	Copy of Re	Report To:	RUSH Priority
	Assuring Address:	(rb4V	Address:		Upon filling out this section, client accepts that surcharges will be applied to the analysis
Project Information					Date Required
Project ID: YEARLY & ASELINE	LNE Attention:		Attention:	BRIDGET ANDREWS	As Indicated
7 I	Phone:		Phone:		 When "ASAP" is requested, turn around will default
Project Location: CL2 RAW TAP	TAP Cell:		Cell:		to a 100% RUSH priority, with pricing and turn
NJ TH	TOR LONDFax:		Fax:		around time to match. Please contact the lab prior
			E-mail:		
Proj. Acct. Code:	Agreement ID:	rt ID:			Signature
	Copy of report:	eport:	Copy of invo	nvoice:	Sample Custody (please print)
XE-mail	Online PDF	11	QA/QC Report		Sampled by:
Report Results Mail	Fax Excel	Ö		<i>Bke</i>	Company:
Special Instructions/Comments (please include contact information including ph. # if different from above).	iclude contact informa	tion including ph. # if	Include Regulatory Requirements Below:	tainers	I authorize Exova to proceed with the work indicated on this form: Date: Initial:
		8		r of Cor	This section for Lab use only Date/Time Stamp://www.labelabelabelabelabelabelabelabelabelabe
				Numbo	S S S
Sample Identification	Location IN CM	M Date/Time sampled	Matrix Sampling	∃ ↓ Enter tests above (√ relevant samples below)	Indicate below any deficiencies in the condition of samples:
1 YEARLY BASE LINE	RAW	29/04/2014/ 8:5	57Am	¥ 	
3					
4					
σ					
σ					
7					
8					
9					
10					
12					
13					
14					
120 ⁻					
	Environmental Sample Information Sheet	neet	LOT: 999436	COC Shipping:	# and size of coolers received:
Note: Proper completion of this form is required in order to proceed with analysis	is required in order to	proceed with analysis		COD Y/N	
Please indicate any potentially hazardous samples	otentially hazardous	samples		Cooler temp:	Delivery Method:
	Control # B	B 031537			Waybill:
Indûa ûl	2000				Received by:

 Exova
 T: +1 (604) 514-3322

 #104, 19575-55 A Ave.
 F: +1 (604) 514-3323

 Surrey, British Columbia
 E: Surrey@exova.com

 V3S 8P8, Canada
 W: www.exova.com

Report Transmission Cover Page

Bill To:	Gillies Bay Improvement District	Project:		Lot ID:	1107277
Report To:	Gillies Bay Improvement District	ID:	Annual Base Line Sample	Control Number:	
	PO Box 237	Name:	Raw	Date Received:	Nov 18, 2015
	Gillies Bay, BC, Canada	Location:		Date Reported:	Nov 24, 2015
	VON 1W0	LSD:		Report Number:	2062599
Attn:	Ken Taylor	P.O.:			
Sampled By:		Acct code:			
Company:					

Contact & Affiliation	Address	Delivery Commitments
Ken Taylor Gillies Bay Improvement District	, PO Box 237 Gillies Bay, British Columbia V0N 1W0 Phone: (604) 414-3703 Fax: null Email: deluxebros@hushmail.com	On [Lot Verification] send (COA) by Email - Single Report On [Report Approval] send (COC, Test Report) by Email - Merge Reports
Bridget Andrews Gillies Bay Improvement District	, PO Box 212 Gillies Bay, British Columbia V0N 1W0 Phone: (604) 414-3703 Fax: null Email: admin@gillies-bay.ca	On [Lot Approval and Final Test Report Approval] send (Invoice) by Email - Single Report
Douglas Anderson Gillies Bay Improvement District	, PO Box 237 Gillies Bay, British Columbia V0N 1W0 Phone: (604) 414-3703 Fax: null Email: danderson@andersoncivil.com	On [Report Approval] send (Test Report) by Email - Single Report

Notes To Clients:

• Sample was decanted and preserved upon receipt.

• An appropriately preserved sample was not received for Total Mercury analysis of sample 1107277-1. Analysis was performed on unpreserved sample.

• pH analysis was performed past the recommended holding time of 15 minutes from sample collection.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

Exova #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To:	Gillies Bay Improvement District	Project:	
Report To:	Gillies Bay Improvement District	ID:	Annual Base Line
	PO Box 237	Name:	Raw
	Gillies Bay, BC, Canada	Location:	
	VON 1W0	LSD:	
Attn:	Ken Taylor	P.O.:	
Sampled By:		Acct code:	
Company:			

Lot ID: 1107277

Control Number: B18253 Date Received: Date Reported: Nov 24, 2015 Report Number: 2062599

Sample

Nov 18, 2015

		Reference Number	1107277-1			
		Sample Date	November 17,	2015		
		Sample Time	09:21			
		Sample Location				
		Sample Description	Annual Base L	ine Sample - Raw		
		Sample Matrix	Water			
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Metals Extractable						
Aluminum	Extractable	mg/L	<0.005	0.005	0.1	Below OG
Antimony	Extractable	mg/L	<0.0002	0.0002	0.006	Below MAC
Arsenic	Extractable	mg/L	<0.0002	0.0002	0.010	Below MAC
Barium	Extractable	mg/L	0.004	0.001	1	Below MAC
Boron	Extractable	mg/L	0.005	0.005	5	Below MAC
Cadmium	Extractable	mg/L	<0.00007	0.00007	0.005	Below MAC
Chromium	Extractable	mg/L	<0.0005	0.0005	0.05	Below MAC
Copper	Extractable	mg/L	0.002	0.001	1.0	Below AO
Lead	Extractable	mg/L	0.0002	0.0001	0.01	Below MAC
Selenium	Extractable	mg/L	<0.0006	0.0006	0.05	Below MAC
Uranium	Extractable	mg/L	<0.0005	0.0005	0.02	Below MAC
Vanadium	Extractable	mg/L	<0.00010	0.0001		
Zinc	Extractable	mg/L	0.004	0.001	5.0	Below AO
Metals Total						
Mercury	Total	mg/L	<0.00001	0.00001	0.001	Below MAC
Physical and Aggregate	Properties	0				
Colour	True	Colour units	20	5		
Turbidity		NTU	0.80	0.02		
Routine Water						
pН	at 25 °C		7.13		6.5-8.5	Within AO
Electrical Conductivity		μS/cm at 25 C	118	1		
Calcium	Extractable	mg/L	17.2	0.1		
Iron	Extractable	mg/L	0.084	0.005	0.3	Below AO
Magnesium	Extractable	mg/L	2.07	0.1		
Manganese	Extractable	mg/L	0.008	0.001	0.05	Below AO
Potassium	Extractable	mg/L	0.4	0.1		
Silicon	Extractable	mg/L	2.33	0.05		
Sodium	Extractable	mg/L	4.2	0.1	200	Below AO
T-Alkalinity	as CaCO3	mg/L	51	5		
Chloride	Dissolved	mg/L	5.64	0.05	250	Below AO
Fluoride	Dissolved	mg/L	0.03	0.01	1.5	Below MAC
Nitrate - N	Dissolved	mg/L	0.04	0.01	10	Below MAC
Nitrite - N	Dissolved	mg/L	0.40	0.01	1	Below MAC
Sulfate (SO4)	Dissolved	mg/L	3.68	0.5	500	Below AO
Hardness	as CaCO3	mg/L	51	1		
Total Dissolved Solids	Extractable	mg/L	71	1		

Exova #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To:	Gillies Bay Improvement District	Project:	
Report To:	Gillies Bay Improvement District	ID:	Annual
	PO Box 237	Name:	Raw
	Gillies Bay, BC, Canada	Location:	
	VON 1W0	LSD:	
Attn:	Ken Taylor	P.O.:	
Sampled By:		Acct code:	
Company:			

Lot ID: 1107277

Control Number: B18253 Date Received: Nov 18, 2015 Date Reported: Nov 24, 2015 Report Number: 2062599

Base Line Sample

Mathiert SUNA

Approved by:

Mathieu Simoneau Operations Manager

Data have been validated by Analytical Quality Control and Exova's Integrated Data Validation System (IDVS). Generation and distribution of the report, and approval by the digitized signature above, are performed through a secure and controlled automatic process.
 Exova
 T: +1 (604) 514-3322

 #104, 19575-55 A Ave.
 F: +1 (604) 514-3323

 Surrey, British Columbia
 E: Surrey@exova.com

 V3S 8P8, Canada
 W: www.exova.com

Methodology and Notes

Lot ID: 1107277

Date Reported: Nov 24, 2015 Report Number: 2062599

B18253

Nov 18, 2015

Control Number:

Date Received:

Bill To:	Gillies Bay Improvement District	Project:	
Report To:	Gillies Bay Improvement District	ID:	Annual Base Line Sample
	PO Box 237	Name:	Raw
	Gillies Bay, BC, Canada	Location:	
	VON 1W0	LSD:	
Attn:	Ken Taylor	P.O.:	
Sampled By:		Acct code:	
Company:			

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
Alk, pH, EC, Turb in water (Surrey)	APHA	* Alkalinity - Titration Method, 2320 B	19-Nov-15	Exova Surrey
Alk, pH, EC, Turb in water (Surrey)	APHA	* Conductivity, 2510 B	19-Nov-15	Exova Surrey
Alk, pH, EC, Turb in water (Surrey)	APHA	* pH - Electrometric Method, 4500-H+ B	19-Nov-15	Exova Surrey
Anions by IEC in water (Surrey)	APHA	 * Ion Chromatography with Chemical Suppression of Eluent Cond., 4110 B 	19-Nov-15	Exova Surrey
Mercury Low Level (Total) in water (Surrey)	EPA	* Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry, 245.7	23-Nov-15	Exova Surrey
Metals SemiTrace (Extractable) in water (Surrey)	US EPA	* Metals & Trace Elements by ICP-AES, 6010C	19-Nov-15	Exova Surrey
Trace Metals (extractable) in Water (Surrey)	US EPA	 Determination of Trace Elements in Waters and Wastes by ICP-MS, 200.8 	19-Nov-15	Exova Surrey
True Color in water (Surrey)	APHA	* Spectrophotometric - Single Wavelength Method, 2120 C	20-Nov-15	Exova Surrey
Turbidity - Water (Surrey)	APHA	* Turbidity - Nephelometric Method, 2130 B	23-Nov-15	Exova Surrey
		* Reference Method Modified		

References

APHA	Standard Methods for the Examination of Water and Wastewater
US EPA	US Environmental Protection Agency Test Methods

Guidelines

Guideline Descripti	on Health Canada GCDWQ
Guideline Source	Guidelines for Canadian Drinking Water Quality, Health Canada, October 2014
Guideline Commer	ts MAC = Maximum Acceptable Concentration
	AO = Aesthetic Objective
	OG = Operational Guideline for Water Treatment Plants
	Refer to Health Canada GCDWQ for complete guidelines and additional drinking water information at www.hc-sc.gc.ca

Comments:

- Sample was decanted and preserved upon receipt.
- An appropriately preserved sample was not received for Total Mercury analysis of sample 1107277-1. Analysis was performed on unpreserved sample.
- pH analysis was performed past the recommended holding time of 15 minutes from sample collection.

Exova #104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Methodology and Notes

Bill To:	Gillies Bay Improvement District	Project:	
Report To:	Gillies Bay Improvement District	ID:	Annual Base Line Sample
	PO Box 237	Name:	Raw
	Gillies Bay, BC, Canada	Location:	
	VON 1W0	LSD:	
Attn:	Ken Taylor	P.O.:	
Sampled By:		Acct code:	
Company:			

Lot ID: 1107277

Control Number: B18253 Date Received: Nov 18, 2015 Date Reported: Nov 24, 2015 Report Number: 2062599

The comparison of test results to guideline limits is provided for information purposes only. This is not to be taken as a statement of conformance / nonconformance to any guideline, regulation or limit. The data user is responsible for all conclusions drawn with respect to the data and is advised to consult official regulatory references when evaluating compliance.

Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

	Received by:	L1.M			C C Z		Control #		of	Page
	-	5			0 1 0					
001101 .	1.1				nples	nazardous san	potentially h	Please indicate any potentially hazardous samples	Pleas	
NITOT					Note: Proper completion of this form is required in order to proceed with analysis	in order to proc	m is required	pletion of this for	ote: Proper com	z
						rmation Sheet	Sample Infor	Environmental Sample Information Sheet		ED
ceived:	# and size of coolers received:	ľ	LOI: 1107277 COC							15
unites/ remip:					- 100 - 1					14
- recommended holding										13
Are samples within							x e			12
										11
										10
- received (document					*				~	9
Were any extra samples									a.	œ
							1			7
- packaged well?										ი
Were the containers										U1
				2						4
The shipping container:				1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		8		-		6
Was there any damage to										0 10
-used :	A				CION 11/11/		EKAW	THUE SANGT	ANUTA BASE	_
Were Exova supplies				WH ICID	1			1		_
ficiencies in the	Indicate below any deficiencies in the condition of samples:	Enter tests above (\/ relevant samples below)	Sampling Method	led Matrix	Date/Time sampled	IN CM M	Location	lification	Sample Identification	
1:00 RCVD	11-18-15A11:00	Numbe								
	Date/Time stamp:									
This section for Lab use only	This section for			- indan cirre						
Initial:	on this form: Date:	9		Include Regulatory Requirements Below:	including ph. # IT	act information	include conta	omments (please	Special Instructions/Comments (please include contact information including ph. # If different from above).	Specia differe
Company: I authorize Exova to proceed with the work indicated	Company: I authorize Exova to proce				-	Excel	Fax	Mail	Heport Hesuits	Керо
	Sampled by:		Report	QA/QC Report		PDF	Online	E-mail	;	
ly (please print)	Sample Custody (please print)		Copy of invoice:		8	Copy of report: X		a ma		
	Signature				70135	Agreement ID: 70135	Contraction of the second		Proi. Acct. Code:	Proj. A
		deluxebros@hushmail.com	E-mail:	nail.com	deluxebros@hushmail.com	E-mail:	and the first	X	## #	PO/AFE#:
USH samples.	to submitting RUSH samples.		Fax:			Fax:		5	Legal Location:	Legal
y, with pricing and turn	to a 100% RUSH priority, with pricing and turn					Cell:			Project Location:	Projec
d, turn around will default	When "ASAP" is requested, turn around will default		Phone:		16001 414_3703	Phone:	100		Project Name.	Dission
All Analysis	As Indicated	Ken Taylor /	Attention:			Attention:			+ ID:	Project ID:
	Date Required	VON IWO		VON IWO	Gillies Bay, BC V				Project Information	Proiec
tion, client accepts that plied to the analysis	Upon filling out this section, client accepts that surcharges will be applied to the analysis	Gillies Bay Improvement District	Company: Address:	rement District	Gillies Bay Improvement District	Company: Address:	Advising	AC AC		
riority	RUSH Priority	ort To:	Copy of Report		nation	Billing Information	sting	Te		
								I		

+

ş

¥

ä,

Exova #104, 19575-55 A Ave. Surray, British Columbia V3S 8P8, Canada	T: +1 (614) 514-3322 F: +1 (604) 574-3323 E: Surray@excve.com W: WWW.excve.com					xova
Analytical Re	port					. 1
Report To:	Aaron Service Aaron Service 4703 Marine Avenue Powell River, BD, Canada V8A 2L2	Project: ID: Name: Location: LSD;	229656 Reg dis. Aaron/ PR. Reg. Dis Texada Airport	trict Date	ol Number: A159 Received: Oct 2)776 1226 17, 2010 2, 2010
Attn: (Coranne Anderson S.Bennett/ W. Blanchet *)	P.O.: Acct code: Caretaher	229656	Repoi	rt Number: 1375	274
, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1	1999-2004 7	Reference Number Sample Date Sample Time Sample Location Sample Description	770776-1 October 26, 2 09:30 229656 PR, R	010 Seglonal - Outside Tap		
		Sample Matrix	Drinking Wate	1		
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Metals Extractable	à					
Aluminum	Extractable	mg/L	<0.005	0.005	0.1	Below OG
Antimony	Extractable	mg/L	<0.0002	0.0002	0,008	Below MAC
Arsenic	Extractable	mg/L	0.0092	0.0002	0.010	Below MAC
8arlum	Extractable	mg/L	0,008	0,001	1	Below MAC
Boron	Extractable	mg/L	0.061	0.005	5	Below MAC
Cadmlum	Extractable	mg/L	<0.00007	0.00007	0.005	Below MAC
Chromium	Extractable	mg/L	0.0013	0.0005	0,05	Below MAC
Copper	Extractable	mg/L	0.008	0.001	1.0	Below AO
Lead	Extractable	mg/L	0.0002	0.0001	0.01	Below MAC
Selenium	Extractable	mg/L	<0.0006	0.0006	0.01	Below MAC
Uranium	Extractable	mg/L	<0.0005	0,0005	0.02	Below MAC
Vanadium	Extractable	mg/L	0,0009	0.0001	0.02	00000 110 (0
Zinc	Extractable	mg/L	0.002	0;001	5.0	Below AO
Microbiological Ar	alysis	U U				
Total Coliforms	Enzyme Substrate Test	MPN/100 mL	2,0	1.0	0 per 100 mL	Above MAC
Escherichia coli	Enzyme Substrate Test	• MPN/100 mL	<1.0	1.0	0 per 100 mL	Below MAC
Heterotrophic Cour Aerobic		MPN/mL	4	2		
Physical and Aggr	egate Properties					
Turbidity		NTU	0.2	0.1		
Colour Routine Wate r	Apparent	Colour units	<5	5		
pН	@ 25 °C		8.22		6.5-8.5	Wilhin AO
Calcium	Extractable	mg/L	30.9	0.1		
Iron	Extractable	mg/L	<0.005	0.005	0,3	Below AO
Magnesium	Extractable	mg/L	6.8	0,1		
Manganese	Extractable	mg/L	0.004	0.001	0.05	Below AO
Phosphorus	Extractable	mg/L	0,13	0.01		
Potassium	Extractable	mg/L	2.1	0.1		
Silicon	Extractable	mg/L	5,28	0,05		
Sodium	Extractable	mg/L	14.5	0,1	200	Below AO
T-AlkalinIty	as CaCO3	mg/L	136	5		
Chloride	Dissolved	mg/L	3.34	0,02	250	Bslow AO
Fluoride	Dissolved	mg/L	0,08	0.01	1.5	Below MAC
Nitrate - N	Dissolved	mg/L		~.~!	1.444	

Terms and Conditions: www.oxova.ca/la/ms&conditions

,

Exova	T: +1 (694) 514-3322
#104, 19575-55 A Ave.	F: +1 (604) 514-3323
Surrey, British Columbia	E: Surray@axovs.com
V3S 8P8, Canada	W: WYW.exova.com

Analytical Report

Report To: Altn:	Aaron Service Aaron Service 4703 Marine Avenue Powell River, BC, Canada V8A 2L2 Coranne Anderson S.Bennell/ W. Blanchet	Project: ID: Name: Location: LSD: P.O.: Acct code:	229655 Reg dis. Aaron/ PR. Reg. District Texada Airport 229666	Lot ID: Conirol Number: Date Received: Date Reported: Report Number;	Oct 27, 2010 Nov 2, 2010
Company:					

,		Reference Number Sample Date Sample Time Sample Location	770778-1 October 26, 2010 09:30 229656 PR. Regional - Outside Tap Drinking Water					
		Sample Description Sample Matrix						
Analyte	<u></u>	Units	Result	Nominal Detection Limit	Guideline Limit	Guldeline Comments		
Routine Water - Confinu	ied							
Nitrite - N	Dissolved	mg/L	<0.01	0.01	1	Below MAC		
Sulfate (SO4)	Dissolved	mg/L	4.64	0.05	500	Below AO		
Hardness	as CaCO3	mg/L	100	1				
Total Dissolved Solids	Extractable	mg/L	160	1				

Andrew Garrard, BSc General Manager

;

Appendix C

SPLP Test Results for Lafarge Quarry Aggregate Products

CERTIFICATE OF ANALYSIS

REPORTED TO	Lafarge Texada Quarry PO Box 160 Van Anda, BC V0N 3K0	TEL FAX	(604) 486-2009 -
ATTENTION	Neil Polding	WORK ORDER	6091167
PO NUMBER PROJECT PROJECT INFO	Texada Quarry Analysis	RECEIVED / TEMP REPORTED	2016-09-15 12:30 / 23°C 2016-09-20

General Comments:

CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

S+LL

Authorized By:

Brent Coates, B.Sc. Division Manager, Richmond

If you have any questions or concerns, please contact your Account Manager: Jeffery Lopes (jlopes@caro.ca)

Locations:

#110 4011 Viking Way Richmond, BC V6V 2K9 Tel: 604-279-1499 Fax: 604-279-1599 #102 3677 Highway 97N Kelowna, BC V1X 5C3 Tel: 250-765-9646 Fax: 250-765-3893 www.caro.ca 17225 109 Avenue Edmonton, AB T5S 1H7 Tel: 780-489-9100 Fax: 780-489-9700

ANALYSIS INFORMATION

EPORTED TOLafarge Texada QuarryROJECTTexada Quarry Analysis		WORK ORDER REPORTED	6091167 2016-09-20		
Analysis Des	cription	Method Reference	Technique	Location	
SPLP Extraction	n (Non-Volatiles) in	EPA 1312	20:1 Leach for 18 h	Richmond	
SPLP Leachable Metals by ICPMS in APHA 3030E* / EPA		APHA 3030E* / EPA	HNO3+HCI Hot Block Digestion / Inductively Coupled	Richmond	
	isk in the Method Refere	6020A ence indicates that the CAF	Plasma-Mass Spectroscopy (ICP-MS) O method has been modified from the reference method		
Note: An aster	rence Descriptions:		O method has been modified from the reference method		
	rence Descriptions: United States Enviro	ence indicates that the CAF	O method has been modified from the reference method		
Note: An astern Method Refer	rence Descriptions: United States Enviro	onmental Protection Agency	O method has been modified from the reference method		
Note: An astern Method Refer EPA Glossary of T	rence Descriptions: United States Enviro Ferms: Method Reporting Li Less than the Repor	onmental Protection Agency	RO method has been modified from the reference method Test Methods the RDL may be higher than the MRL due to various factors su	ch	
Note: An astern Method Refer EPA Glossary of T MRL	rence Descriptions: United States Enviro Ferms: Method Reporting Li Less than the Repor	onmental Protection Agency	RO method has been modified from the reference method Test Methods the RDL may be higher than the MRL due to various factors su	ch	

SAMPLE ANALYTICAL DATA

REPORTED TO PROJECT	Lafarge Texada Quarry Texada Quarry Analysis	;	-		WORK ORDER REPORTED		6091167 2016-09-20	
Analyte		Result / ecovery	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
Sample ID: NTP G	RAB SAMPLE 510 Level	(6091167	-01) [Solid] San	npled: 201	6-09-07 00:0	0		
SPLP Non-Volatile	Extraction Details							
Extraction Fluid pH		5.03	N/A		pH units	N/A	2016-09-19	
Final Extract pH		9.78	N/A		pH units	N/A	2016-09-19	
SPLP Metals								
Antimony		0.001	N/A	0.0005	mg/L	2016-09-19	2016-09-19	
Arsenic		< 0.001	N/A	0.001	mg/L	2016-09-19	2016-09-19	1
Barium		< 0.10	N/A	0.10	mg/L	2016-09-19	2016-09-19	1
Beryllium		< 0.005	N/A	0.005	mg/L	2016-09-19	2016-09-19	1
Boron		< 0.050	N/A	0.050	-	2016-09-19	2016-09-19	1
Cadmium		0.0001	N/A	0.0001	mg/L	2016-09-19	2016-09-19	I
Chromium		< 0.005	N/A	0.005	mg/L	2016-09-19	2016-09-19	I
Cobalt		< 0.002	N/A	0.002	mg/L	2016-09-19	2016-09-19	1
Copper		< 0.010	N/A	0.010	mg/L	2016-09-19	2016-09-19	I
Iron		< 0.10	N/A	0.10	mg/L	2016-09-19	2016-09-19	
Lead		0.002	N/A	0.001	mg/L	2016-09-19	2016-09-19	
Mercury		< 0.0001	N/A	0.0001	mg/L	2016-09-19	2016-09-19	
Nickel		< 0.010	N/A	0.010	mg/L	2016-09-19	2016-09-19	
Selenium		< 0.002	N/A	0.002	mg/L	2016-09-19	2016-09-19	
Silver		0.0003	N/A	0.0001	mg/L	2016-09-19	2016-09-19)
Thallium		< 0.001	N/A	0.001	mg/L	2016-09-19	2016-09-19)
Uranium		< 0.002	N/A	0.002	mg/L	2016-09-19	2016-09-19)
Vanadium		< 0.005	N/A	0.005	mg/L	2016-09-19	2016-09-19)
Zinc		0.21	N/A	0.050	mg/L	2016-09-19	2016-09-19)
Zirconium		< 0.005	N/A	0.005	mg/L	2016-09-19	2016-09-19)

Sample ID: HFSA SAMPLE (6091167-02) [Solid] Sampled: 2016-09-13 00:00

SPLP Non-Volatile Extraction Det	tails					
Extraction Fluid pH	5.03	N/A		pH units	N/A	2016-09-19
Final Extract pH	10.0	N/A		pH units	N/A	2016-09-19
SPLP Metals						
Antimony	0.001	N/A	0.0005	mg/L	2016-09-19	2016-09-19
Arsenic	0.011	N/A	0.001	mg/L	2016-09-19	2016-09-19
Barium	< 0.10	N/A	0.10	mg/L	2016-09-19	2016-09-19
Beryllium	< 0.005	N/A	0.005	mg/L	2016-09-19	2016-09-19
Boron	< 0.050	N/A	0.050	mg/L	2016-09-19	2016-09-19
Cadmium	< 0.0001	N/A	0.0001	mg/L	2016-09-19	2016-09-19
Chromium	< 0.005	N/A	0.005	mg/L	2016-09-19	2016-09-19
Cobalt	< 0.002	N/A	0.002	mg/L	2016-09-19	2016-09-19
Copper	< 0.010	N/A	0.010	mg/L	2016-09-19	2016-09-19
Iron	< 0.10	N/A	0.10	mg/L	2016-09-19	2016-09-19
Lead	< 0.001	N/A	0.001	mg/L	2016-09-19	2016-09-19
Mercury	< 0.0001	N/A	0.0001	mg/L	2016-09-19	2016-09-19
Nickel	< 0.010	N/A	0.010	mg/L	2016-09-19	2016-09-19
Selenium	< 0.002	N/A	0.002	mg/L	2016-09-19	2016-09-19

SAMPLE ANALYTICAL DATA

REPORTED TO PROJECT	Lafarge Texada Quar Texada Quarry Analys	5				WORK REPOI	ORDER RTED	6091167 2016-09-20
Analyte		Result / <i>Recovery</i>	Standard / Guideline	MRL / Limits	Units	Prepared	Analyzed	Notes
· ·	SAMPLE (6091167-02)	[Solid] San	npled: 2016-09-1	3 00:00, C	ontinued			
SPLP Metals, Conti	nued	0.0004	N1/A	0 0001	ma/l	2016-09-19	2016-09-19	
Silver		0.0001	N/A	0.0001				
Thallium		< 0.001	N/A	0.001	mg/L	2016-09-19	2016-09-19	
Uranium		< 0.002	N/A	0.002	mg/L	2016-09-19	2016-09-19	
Vanadium		< 0.005	N/A	0.005	mg/L	2016-09-19	2016-09-19	1
Zinc		< 0.050	N/A	0.050	mg/L	2016-09-19	2016-09-19	
Zirconium		< 0.005	N/A	0.005	mg/L	2016-09-19	2016-09-19	

REPORTED TO	Lafarge Texada Quarry
PROJECT	Texada Quarry Analysis

 WORK ORDER
 6091167

 REPORTED
 2016-09-20

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment
- **Duplicate (Dup)**: Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.
- Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).
- Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte Result MRL Units	Spike Source _{% REC} REC _{% RPD} RPD _{Notes} Level Result Limit Limit
--------------------------	---

SPLP Metals, Batch B6I1039

Blank (B6I1039-BLK1)			Prepared: 2016-09-19, Analyzed: 2016-09-19	
Antimony	< 0.0005	0.0005 mg/L		
Arsenic	< 0.001	0.001 mg/L		
Barium	< 0.10	0.10 mg/L		
Beryllium	< 0.005	0.005 mg/L		
Boron	< 0.050	0.050 mg/L		
Cadmium	< 0.0001	0.0001 mg/L		
Chromium	< 0.005	0.005 mg/L		
Cobalt	< 0.002	0.002 mg/L		
Copper	< 0.010	0.010 mg/L		
Iron	< 0.10	0.10 mg/L		
Lead	< 0.001	0.001 mg/L		
Mercury	< 0.0001	0.0001 mg/L		
Nickel	< 0.010	0.010 mg/L		
Selenium	< 0.002	0.002 mg/L		
Silver	< 0.0001	0.0001 mg/L		
Thallium	< 0.001	0.001 mg/L		
Uranium	< 0.002	0.002 mg/L		
Vanadium	< 0.005	0.005 mg/L		
Zinc	< 0.050	0.050 mg/L		
Zirconium	< 0.005	0.005 mg/L		
Duplicate (B6I1039-DUP1)	Sou	ırce: 6091167-01	Prepared: 2016-09-19, Analyzed: 2016-09-19	
Antimony	0.0007	0.0005 mg/L	0.001	73
Arsenic	< 0.001	0.001 mg/L	< 0.001	31
Barium	< 0.10	0.10 mg/L	< 0.10	36
Beryllium	< 0.005	0.005 mg/L	< 0.005	30
Boron	< 0.050	0.050 mg/L	< 0.050	30
Cadmium	< 0.0001	0.0001 mg/L	0.0001	61
Chromium	< 0.005	0.005 mg/L	< 0.005	30
Cobalt	< 0.002	0.002 mg/L	< 0.002	30

0.010 mg/L

0.10 mg/L

< 0.010

< 0.10

< 0.010

< 0.10

Copper

Iron

57

70

APPENDIX 1: QUALITY CONTROL DATA

REPORTED TO PROJECT	Lafarge Texada Quarry Texada Quarry Analysis				-	K ORDEF DRTED)91167)16-09-20	
Analyte	Result	MRL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Notes

SPLP Metals, Batch B6I1039, Continued

Duplicate (B6I1039-DUP1), Continued	Source: 6091167-01		Prepared: 2016-09-19, Analyzed: 2016-09-1	9
Lead	< 0.001	0.001 mg/L	0.002	74
Mercury	< 0.0001	0.0001 mg/L	< 0.0001	49
Nickel	< 0.010	0.010 mg/L	< 0.010	38
Selenium	< 0.002	0.002 mg/L	< 0.002	30
Silver	< 0.0001	0.0001 mg/L	0.0003	59
Thallium	< 0.001	0.001 mg/L	< 0.001	60
Uranium	< 0.002	0.002 mg/L	< 0.002	30
Vanadium	< 0.005	0.005 mg/L	< 0.005	30
Zinc	0.054	0.050 mg/L	0.21	37
Zirconium	< 0.005	0.005 mg/L	< 0.005	30

Matrix Spike (B6I1039-MS1)	Source: 6091167-02		Prepared	d: 2016-09-	zed: 2016-09-19		
Antimony	0.386	0.0005 mg/L	0.400	0.001	96	70-130	
Arsenic	0.230	0.001 mg/L	0.200	0.011	109	70-130	
Barium	1.00	0.10 mg/L	1.00	< 0.100	99	70-130	
Beryllium	0.089	0.005 mg/L	0.100	< 0.005	89	70-130	
Cadmium	0.103	0.0001 mg/L	0.100	< 0.0001	103	70-130	
Chromium	0.446	0.005 mg/L	0.400	< 0.005	112	70-130	
Cobalt	0.442	0.002 mg/L	0.400	< 0.002	110	70-130	
Copper	0.442	0.010 mg/L	0.400	< 0.010	111	70-130	
Iron	2.23	0.10 mg/L	2.00	< 0.100	111	70-130	
Lead	0.196	0.001 mg/L	0.200	< 0.001	98	70-130	
Nickel	0.441	0.010 mg/L	0.400	< 0.010	110	70-130	
Selenium	0.112	0.002 mg/L	0.100	< 0.002	112	70-130	
Silver	0.106	0.0001 mg/L	0.100	0.0001	106	70-130	
Thallium	0.097	0.001 mg/L	0.100	< 0.001	97	70-130	
Vanadium	0.430	0.005 mg/L	0.400	< 0.005	107	70-130	
Zinc	1.09	0.050 mg/L	1.00	< 0.050	109	70-130	

SPLP Non-Volatile Extraction Details, Batch B6I1021

Blank (B6I1021-BLK1)	zed: 2016-09-19				
Extraction Fluid pH	5.03	pH units			
Final Extract pH	9.67	pH units			
Duplicate (B6I1021-DUP1)	Source: 6091167-01		Prepared: 2016-09-19, Analyz	zed: 2016-09-19	
Extraction Fluid pH	5.03	pH units	5.03	< 1	
Final Extract pH	10.1	pH units	9.78	3	